领取MOLI红包

活化反應濺鍍法 - 大永真空設備股份有限公司

活化反應濺鍍法的製程原理 鍍膜技術的進展帶動如光電、機械與半導體等產業的發展,許多新穎薄膜特性如光、電、磁、能源與機械特性陸續被開發,現今顯示器、觸控面板及半導體產業鍍膜製程中常應用直流磁控濺鍍技術,透過電源改良與不同反應性氣體流量形成不同成分之化合物薄膜 [1,2],亦通稱為反應性濺鍍,反應性濺鍍之理論基礎建立於遲滯現象上 [3–6],但反應性濺鍍存在三個主要問題 [7]: 遲滯現象(Hysteresis effect)。 靶面中毒導致電弧放電(Arcing)。 陽極消逝(Disappearing anode effect)。 圖一、(a) 氮分壓-氮氣流量遲滯曲線,(b) 氧分壓-氧氣流量遲滯曲線 圖一(a)、(b)分別為為氮分壓-氮氣流量及氧分壓-氧氣流量之遲滯曲線示意圖,說明隨著反應性氣體流量增加,靶材表面由金屬態、過渡態轉至毒化態,金屬靶材表面逐漸被介電質覆蓋形成一絕緣層,此絕緣層可視為一平行電極板,導致氬離子產生電荷累積,當正電荷累積過多會與靶材之間發生擊穿之現象(此現象稱為arcing),並伴隨高溫高熱,蒸發出較大粒子,使膜質下降並影響光學特性,如圖二所示,為消除反應性濺鍍製程中遲滯現象所造成arcing與電漿密度不穩定所導致薄膜品質與製程不穩定等問題,出現活化反應濺鍍製程概念 [8],製程系統中具有靶材區與電漿源區,此電漿源區亦可稱為耦合電漿區。製程中於靶材區通入惰性氣體,於電漿區通入混和之反應性氣體,使靶材於濺鍍過程不受反應性氣體影響,製程具有高穩定性,並仍保有濺鍍製程之高薄膜品質與大面積高均勻性等優勢。 圖二、Arcing造成薄膜缺陷示意圖 圖三、不同反應性氣體通量於靶面形成介電質示意圖 如圖三(a)所示,反應性濺鍍於低反應性氣體通量時靶材為金屬態,反應性氣體不易於靶材表面形成化合物,幾乎所有反應性氣體皆用來形成化合物;隨著反應性氣體流量提高,靶材表面逐漸形成化合物,如上圖3(b)~(d)所示 [9],進而影響製程穩定性與沉積速率。為避免反應性氣體對製程造成影響,將濺射與反應分為兩階段 [10]:陰極靶材濺射出靶材粒子,附著於基板表面形成超薄金屬膜,其厚度約1~4Å,並於一封閉區域產生反應性氣體電漿,使反應性氣體如氧氣、氮氣之氣體自由基與基板表面超薄金屬反應,並透過混和氣體比例形成多種反應物,如SiOx、NbxOy或SixNy等化合物,此時屬於薄膜成長之成核階段,重複以上過程使靶材粒子不斷反應並凝聚,以形成介電質薄膜,透過分離濺鍍與反應性氣體間交互作用,藉此消除電荷累積、arcing與製程不穩定,並達到高沉積速率之效果,此製程法稱活化反應濺鍍法 [11],如圖4所示。 圖四、活化反應濺鍍法示意圖 活化反應濺鍍法的製程優勢 透過分離濺鍍與反應性氣體間交互作用,可有效改善反應性濺鍍製程的缺點,除了可保有濺鍍製程之高薄膜品質與大面積均勻性等優點外,製程具有更高的穩定性及足以媲美於濺射靶材金屬的高沉積速率。 參考資料: [1] J. Čapek and S. Kadlec, "Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Experiment," Journal of Applied Physics 121, 171911 (2017). [2] S. Berg, H. ‐O. Blom, M. Moradi, C. Nender, and T. Larsson, "Process modeling of reactive sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 7, 1225–1229 (1989). [3] A. H. Simon, "Sputter Processing," in Handbook of Thin Film Deposition (Elsevier, 2012), pp. 55–88. [4] K. Koski, J. Hölsä, and P. Juliet, "Deposition of aluminium oxide thin films by reactive magnetron sputtering," Surface and Coatings Technology 116–119, 716–720 (1999). [5] H. Kakati and S. M. Borah, "Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma," Chinese Physics B 24, 125201 (2015). [6] Y. H. Han, S. J. Jung, and J. J. Lee, "Deposition of TiO2 Films by reactive Inductively Coupled Plasma assisted DC magnetron sputtering for high crystallinity and high deposition rate," Surface and Coatings Technology 201, 5387–5391 (2007). [7] C. A. Bishop, "Reactive Sputter Deposition," in Vacuum Deposition onto Webs, Films and Foils (Elsevier, 2011), pp. 375–387. [8] shingo samori, T. Sugawara, S. Agatsuma, M. Ishida, S. Yamamoto, M. Miyauchi, Y. Jiang, and E. Nagae, "RAS Bias Voltage Coating," in Optical Interference Coatings (OSA, 2013), p. WC.3. [9] R. Chodun, K. Nowakowska-Langier, and K. Zdunek, "Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition," Materials Science-Poland 33, 894–901 (2015). [10] F. Huang, B. Xie, B. Wu, L. Shao, M. Li, H. Wang, Y. Jiang, and Y. Song, "Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer," Applied Surface Science 255, 6781–6785 (2009). [11] D. Noguchi, T. Eto, K. Kodama, Y. Higashimaru, S. Fukudome, Y. Kawano, F. Sei, and I. Siono, "Technique for High-Rate, Low-Temperature Deposition of TiO 2 Photocatalytic Thin Film Using Radical-Assisted Sputtering," Japanese Journal of Applied Physics 50, 010204 (2011).